

AFRL-IF-RS-TR-2002-100
Final Technical Report
May 2002

TRUST MANAGEMENT IN OPEN SYSTEMS (TMOS)

North Carolina State University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. 9804

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2002-100 has been reviewed and is approved for publication.

APPROVED:

 FOR THE DIRECTOR:
 WARREN H. DEBANY, Jr., Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
May 02

3. REPORT TYPE AND DATES COVERED
Final Jun 98 - Dec 00

4. TITLE AND SUBTITLE
TRUST MANAGEMENT IN OPEN SYSTEMS (TMOS)

6. AUTHOR(S)

Vicki E. Jones, William H. Winsborough and Kent Seamons

5. FUNDING NUMBERS
C - F30602-98-C-0222
PE - 33401G
PR - 9804
TA - TM
WU - OS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
North Carolina State University
Campus Box 7514
1 Leazar Hall
Raleigh, NC 27695-7514

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington, VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-100

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: Melvin J. Oster, IFGA, 315-330-1870, osterm@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Authorized for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

Distributed software subjects face the problem of determining one another’s trustworthiness. The problem considered
in the Trust Management in Open Systems (TMOS) project is management of the exchange of sensitive credentials
between strangers for the purpose of property-based authentication and authorization. We designed a framework in
which client and server establish mutual trust by exchanging credentials that are themselves protected resources.
Protected resources are governed by role-based access control policies where roles are derived directly from property-
based credentials. Within the framework, credentials are disclosed only to entities that meet the governing access
control policies. By performing a sequence of credential exchanges, the framework establishes trust incrementally,
enabling sensitive credentials to flow as required to meet the trust requirements of a desired transaction. In addition to
a trust negotiation framework, we developed the concept of a negotiation strategy. A negotiation strategy controls the
exchange of credentials. For instance, it determines how success and failure are detected. It also determines whether
the exchange is guided by an exchange of explicit credential requests and, if so, the content of those requests. We
formally specified and analyzed three negotiation strategies (the eager strategy, the parsimonious strategy, and the
prudent strategy) and investigated hybrids of these strategies.

15. NUMBER OF PAGES
20

14. SUBJECT TERMS
Credentials, Management, Negotiation, Authorization, Authentication, Strategies
 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

i

Abstract

Distributed software subjects face the problem of determining one another’s trustworthiness. The
problem considered in the Trust Management in Open Systems (TMOS) project is management of the
exchange of sensitive credentials between strangers for the purpose of property-based authentication and
authorization. We designed a framework in which client and server establish mutual trust by exchanging
credentials that are themselves protected resources. Protected resources are governed by role-based
access control policies where roles are derived directly from property-based credentials. Within the
framework, credentials are disclosed only to entities that meet the governing access control policies. By
performing a sequence of credential exchanges, the framework establishes trust incrementally, enabling
sensitive credentials to flow as required to meet the trust requirements of a desired transaction.

In addition to a trust negotiation framework, we developed the concept of a negotiation strategy. A
negotiation strategy controls the exchange of credentials. For instance, it determines how success and
failure are detected. It also determines whether the exchange is guided by an exchange of explicit
credential requests and, if so, the content of those requests. We formally specified and analyzed three
negotiation strategies---the eager strategy, the parsimonious strategy, and the prudent strategy---and
investigated hybrids of these strategies.

We constructed two prototype systems that demonstrate trust negotiation and implement the eager
negotiation strategy. The first system uses the trust policy language, developed at IBM Haifa Research
Lab, to specify mappings from credentials to roles, and the trust establishment system, also from Haifa, to
evaluate role membership questions. We deployed the IBM system in a scenario that illustrates a
potential application of trust negotiation in a real-world situation. The second system, developed at
North Carolina State University (NCSU), also implements the eager negotiation strategy but uses freely
available components. The NCSU system uses an Apache web server and Java application programs.

Limited TMOS resources were used to investigate an authorization model for a public key management
service. The model supports public key registration, lookup and revocation and private key escrow,
protected use, and recovery. In the access control model proposed, policy is based on principal,
ownership, and authority relationships on keys.

ii

Table of Contents

1. Summary.. 1
2. Introduction ... 1
3. Credential-based Trust... 2

3.1. When Credentials are Sensitive.. 3
3.2. Negotiation Architecture and Model .. 4

Trust Negotiation Model.. 5
3.3. Negotiation Strategy... 6

An Eager Strategy.. 6
A Parsimonious Strategy ... 7
A Prudent Strategy... 10
Hybrid Strategies ... 10

3.4. Credential Expression Languages .. 10
3.5. Demonstration Prototypes .. 10

4. Public Key Management.. 11
5. Conclusions ... 11
6. References ... 12

iii

List of Figures

Figure 1. Two credentials forming a chain. ... 3
Figure 2. The role of security agents in trust negotiation. ... 4

1

1. Summary
We have designed a framework in which client and server establish mutual trust by exchanging

credentials that are themselves protected resources. Protected resources are governed by role-based
access control policies where roles are derived directly from property-based credentials. Within the
framework, credentials are disclosed only to entities that meet the governing access control policies. By
performing a sequence of credential exchanges, the framework establishes trust incrementally, enabling
sensitive credentials to flow as required to meet the trust requirements of a desired transaction.

In addition to a trust negotiation framework, we have developed the concept of a negotiation strategy.
A negotiation strategy controls the exchange of credentials. For instance, it determines how success and
failure are detected. It also determines whether the exchange is guided by an exchange of explicit
credential requests and, if so, the content of those requests. We formally specified and analyzed three
negotiation strategies---the eager strategy, the parsimonious strategy, and the prudent strategy---and
investigated hybrids of these strategies.

We have constructed two prototype systems that demonstrate trust negotiation and implement the eager
negotiation strategy. The first system uses the trust policy language, developed at IBM Haifa Research
Lab, to specify mappings from credentials to roles, and the trust establishment system, also from Haifa, to
evaluate role membership questions. We have deployed the IBM system in a scenario that illustrates a
potential application of trust negotiation in a real-world situation. The second system, developed at North
Carolina State University (NCSU), also implements the eager negotiation strategy but uses freely
available components. The NCSU system uses an Apache web server and Java application programs.

Limited TMOS resources were used to investigate an authorization model for a public key
management service. The model supports public key registration, lookup and revocation and private key
escrow, protected use, and recovery. In the access control model proposed, policy is based on principal,
ownership, and authority relationships on keys.

2. Introduction
The primary contribution of the TMOS project has been in the area of automated trust negotiation.

Limited resources were applied to public key management. Thus, this report focuses on trust negotiation
research results.

Distributed software subjects face the problem of determining one another’s trustworthiness. Current
mainstream approaches to establishing trust presume that communicating subjects are already familiar
with one another. There are essentially two approaches based on this assumption. The first is identity-
based: identifying a subject is often a sufficient basis for doing business. The second is capability-based:
subjects obtain capabilities that are specific to the resources they wish to use. Both approaches require
that familiarity be established out of band. Identity- and capability-based approaches are both unable to
establish trust between complete strangers. Other solutions are needed in open systems, such as the web,
where the assumption of familiarity is invalid.

Property-based digital credentials [1] (or simply credentials) are the on-line analogues of paper
credentials that people carry in their wallets. They present a promising approach to trust establishment in
open systems. Credentials, which generalize the notion of attribute certificates [26], can authenticate not
just the subject’s identity, but arbitrary properties of a subject and its relationships with other subjects.
Those properties can then be used, for instance, when a client attaches appropriate credentials to a service
request, to support service authorization.

Trust establishment between strangers is particularly important in the context of e-business. Credential
exchange between strangers promises to enable software agents to establish trust automatically with
potential business partners. For instance, a software agent might be charged with finding new candidate
suppliers of commodity goods and services. Even when an automatically generated list of such
candidates eventually would be culled by a human, information such as requirements and availability of
desired goods might be sensitive, requiring trust establishment as part of the automated process of
identifying candidates.

2

The TMOS project investigated automated trust establishment between strangers through credential
exchange when credentials are themselves potentially sensitive. A sensitive credential contains private
information. For instance, access to a credential containing medical information could be restricted to
primary care physicians and HMO staff. Access to a credit card credential could be limited to businesses
authorized to accept a VISA card and that adhere to guidelines for securing credit card numbers. Prior
trust establishment systems based on credential exchange have addressed credential sensitivity only
manually, requiring a user at the client to decide which credentials to submit to each new service. Not
only does this approach require human intervention. It provides the human no assistance in evaluating the
trustworthiness of the server.

This report outlines an architecture for client-server applications in which client and server each
establishes a credential access policy (CAP) for each of its credentials. A credential is disclosed only
when its CAP is satisfied by credentials obtained from the opposing software agent. When an agent needs
additional credentials, it can request them. Credentials flow between the client and server through a
sequence of alternating credential requests and disclosures, which we call a trust negotiation. A formal,
abstract model of trust negotiation is briefly discussed and then used to specify negotiation strategies.

A negotiation strategy determines characteristics of a negotiation such as which credentials are
requested and disclosed, and when the negotiation is halted. This report informally discusses three
negotiation strategies, finding them efficient and effective in establishing trust whenever possible.

Section 3 introduces credentials and explains how they can be used to establish trust between strangers.
Section 3.1 introduces credential sensitivity and the problems it creates. Section 3.2 presents a trust
negotiation architecture and an abstract model of trust negotiation that is used in Section 3.3, where eager,
parsimonious, and prudent negotiation strategies are specified. Section 3.4 briefly discusses credential
expression languages; Section 3.5 summarizes two demonstration prototypes; and Section 4 summarizes
TMOS research in the area of public key management services.

3. Credential-based Trust
A credential is a digitally signed assertion by the credential issuer about the credential owner.

Credentials can be made unforgeable and verifiable by using modern encryption technology: a credential
is signed using the issuer’s private key and verified using the issuer’s public key [15]. A credential
aggregates one or more attributes of the owner, each consisting of an attribute name/value pair and
representing some property of the owner asserted by the issuer. For our purposes, a credential is
specifically not required to identify the owner. Each credential also contains the public key of the
credential owner. The owner can use the corresponding private key to answer challenges or otherwise
demonstrate possession of that private key to establish ownership of the credential. The owner can also
use the private key to sign another credential, owned by a third subject. In this way, credential chains can
be created, with the owner of one credential being the issuer of the next credential in the chain.

Credential chains can be submitted to trace a web of trust from a known subject, the issuer of the first
credential in the chain (e.g., subject A in Figure 1), to the submitting subject, in which trust is needed.
The submitting subject is the owner of the last credential in the chain (e.g., subject C) and can
demonstrate ownership of that credential, as outlined above. Supporting credentials are owned by
subjects with whom the submitting subject has a direct or indirect relationship, and, although they are not
owned by the submitting subject, the submitting entity does collect, keep, and submit copies of them.
Each supporting credential contains the public key whose private-key mate signed the next credential in
the chain, enabling reliable verification that the attribute claims made in that next credential were made
by the owner of the supporting credential.

3

The submitted credentials attempt to demonstrate a (possibly indirect) relationship between the

submitting subject and the known subject that issued the first credential in the chain. The nature of that
relationship can be inferred by inspecting the attributes of the credentials in the chain. Multiple chains
can be submitted to establish a higher degree of trust or to demonstrate additional properties of the
submitting subject and its relationships with known subjects.

A credential expression, ,ψ is a logical expression over credentials with constraints on their attributes.
A credential expression serves to denote the combinations of credentials, C, that satisfy it. We call those
combinations the solutions of the expression. For the purpose of trust negotiation, credential expressions
can be used to convey requests for credentials between client and server. In this context, credential
expressions denote chains of credentials that end with credentials owned by the submitting subject. A
credential expression can also be used as a policy governing access to a resource. Access to the resource
is granted to a subject when a solution is presented that consists of one or more chains ending in
credentials owned by the subject. The resource is unlocked by the solution.

A policy is mobile if it is sent from one subject to another as part of automatic or semiautomatic trust
establishment. Mobile policies are used in prior systems to express requirements a client must meet to
obtain service. When insufficient credentials accompany a service request, the server returns the service-
governing policy (SGP). Communicated in this way, the SGP acts as a request for the credentials needed
to unlock the resource. Such mobile policies enable clients to select a set of credentials whose submission
will authorize the desired service. The client can then issue a second request for service with those
credentials attached, and upon verifying the credentials, the server provides the desired service. Policy
mobility has two significant advantages. First, it offloads from the server to the client the work of
searching the client’s credentials. Second, it enables trust to be established in the client without the client
revealing irrelevant credentials.

3.1. When Credentials are Sensitive

A client wishing to do business with a new service may be unwilling to disclose sensitive credentials
until some degree of trust has been established in that service. Current credential systems do not address
credential sensitivity. The decision to disclose a sensitive credential to a new service is left up to a user at
the client. More specifically, client-credential submission policies specify which credentials can be
submitted with any request to a specified class of service and which credentials require explicit
authorization before they are submitted. This mechanism requires a user be available to make trust
decisions when new service classes are contacted. It does not address how the user decides to trust a
service. The TMOS project developed a method of automating the establishment of trust between
strangers through incremental exchange of sensitive credentials.

Figure 1. Two credentials forming a chain.
Credential 2 was issued by subject B, the owner of Credential 1. In Credential 1, subject A
asserts that subject B is a consumer of shipping services. In Credential 2, subject B asserts
that subject C is a shipper. If we trust subject A's judgment that subject B is a consumer of
shipping, presumably subject B is in a position to know that subject C is a shipper. Additional
credentials owned by subject B can be used to engender trust that subject B is a reliable
authority on the asserted attributes of subject C.

type = reference
relationship = shippingClient

issuer = subjectAKey
owner = subjectBKey

Credential 1

type = reference
relationship = shipper
issuer = subjectBKey
owner = subjectCKey

Credential 2

4

3.2. Negotiation Architecture and Model

A credential is protected by a CAP that controls the credential’s disclosure based on credentials
presented by the other negotiation participant. Throughout, credentials are disclosed only in observance
of these CAPs.

Each negotiation participant is represented in trust negotiations by a security agent (SA), as in the
simple negotiations of Ching et al. [5] and Winslett et al. [21]. The role of the SA is illustrated in Figure
2, which depicts the client security agent (101) and the server security agent (201) and several resources
and contextual factors that each SA considers during negotiation. The client SA manages the disclosure
of client credentials (102) and the server SA manages disclosure of server credentials (202). Like any
protected resource, each credential is governed by an access policy (103, 203) that has the same form as a
SGP. The CAP identifies credentials from the other negotiation participant that would unlock disclosure
of the local credential to that subject.

The client (10) initiates the trust negotiation by making a service request. The client SA intercepts the
request and relays it to the server SA. The application server (20) is accessible only via the server SA.
Upon receiving a request for service (305), the server SA makes an authorization decision based on the
appropriate SGP (206). When the client SA is familiar with the SGP, it can attach appropriate credentials
(304) to the service request so that the service will be authorized. The server SA determines whether the
credentials that arrive with the service request satisfy the SGP. If the policy is satisfied, the trust
negotiation has completed successfully; the service is authorized and the request is forwarded to the
application server, which provides the service to the client (300).

Initially, the client is unfamiliar with the SGP, so attaching satisfactory credentials to an initial service
request is impractical. A trust negotiation strategy can overcome this problem by using mobile policies.
When a server SA receives a request for service without sufficient credentials attached to satisfy the SGP,
it sends the SGP to the client SA as a request for client credentials (302). The client SA can then select a
combination of credentials that satisfies the SGP, and can attach those credentials (304) to a repetition of
the original service request (305).

An important issue in this scenario not addressed in previous trust systems is how to enable the client
SA to make independent trust decisions about which credentials to provide to an unfamiliar server. Our
SAs use CAPs (103, 203) when selecting credentials to disclose. If the client SA cannot satisfy the SGP
by using credentials whose CAPs are unprotected, it can, as the negotiation instigator, introduce further
stages to the trust negotiation by requesting server credentials (303). These stages seek to build mutual
trust through credential exchange, eventually to unlock client credentials that satisfy the SGP. Client

Figure 2. The role of security agents in trust negotiation.

101 Client
Security Agent

100 Client Site 200 Server Site

104
Accumulated

Server
Credentials
(Optional)

103
Client
CAPs

102
Client

Credentials

301
Server Credentials

302
 Request for Client

Credentials

303
 Request for Server

Credentials

304
Client Credentials105

Prior Incoming and
Outgoing Requests

(Optional)

201 Server
Security Agent

203
Server
CAPs

202
Server

Credentials

206
SGPs

305
Service Request

10 Client 20 Application Server
300

Service

5

credentials are unlocked by incoming server credentials (301); however, as an optimization, the client
may also cache and use for this purpose server credentials it received in prior stages (104). (The abstract
model of trust negotiation introduced in Section 0 does not capture this optimization.)

In each negotiation stage, the active subject responds to an incoming request for credentials either by
providing credentials, by formulating a counter request for credentials (302, 303), or both. In some
strategies, the client SA can also repeat one of its previous request (105) for credentials that has not yet
been satisfied. By exchanging credentials and requests for credentials, the two SAs endeavor to establish
trust required to authorize service. Eventually, either the negotiation succeeds or the client SA must
abandon the attempt. The negotiation succeeds when the client SA satisfies the SGP by disclosing
sufficient unlocked credentials. At the same time, the client SA repeats the original service request (305),
this time with sufficient credentials attached (304) to authorize service.

Trust Negotiation Model
Critical for analysis of potential negotiation strategies is the trust negotiation model. The basic model

introduced by the TMOS project is discussed below. The abstract model formalizes a trust negotiation as
a sequence of credential disclosures that alternate between the two participants, optionally augmented by
a sequence of credential requests that serve to guide the disclosures.

The participants in a trust negotiation are the client and server. Each owns a finite set of credentials,

which we denote by ClientCreds and ServerCreds, respectively. Access to each credential c in ClientCreds
or ServerCreds is governed by a policy, denoted govclient(c) or govserver(c), respectively. If a credential
expression, ,ψ is satisfied by a set of credentials C, we write).,(ψCsat Credential expressions are
required to be monotonic; that is, if ,CC ′⊆ then),(ψCsat implies).,(ψC′sat We write ψψ ′≡ if for
all credential sets C,).,(),(ψψ ′C iffC satsat We do not specify a language of credential expressions
here, though an example language is outlined in Section 3.4.

If Creds is any finite set of credentials and C is any set of subsets of Creds, then there exists
ψ such that for all C ⊆ Creds, .),(C∈C iffC ψsat

The purpose of this requirement is to ensure that arbitrary sets of credentials can be specified in
negotiation strategies where credential expressions are transmitted for the purpose of requesting
credentials from other security agents.

We write unlocked(c, C) either if C ⊆ ClientCreds, c∈ServerCreds, and sat(C, govserver(c)), or if C ⊆
ServerCreds, c∈ClientCreds, and sat(C, govclient(c)). If unlocked(c, ∅), c is unprotected. Extending this
relation to sets of credentials, C′, we write unlocked(C′, C) if unlocked(c, C) holds for each c∈C′.

A trust negotiation is given by a sequence of credential disclosures, {Ci}i∈[0,m] = C0,…,Cm, for some
natural number m. (Throughout we use the notation [i, j] to denote the integer interval from i to j,
inclusive.) Each disclosure models a message containing credentials. C0 models a disclosure by the
client to the server. The disclosures then alternate between the two subjects, which we formalize as
follows. Define ii ≤0}{AltCreds by:





=
odd is if ,

even is if ,
i

i
i sServerCred

sClientCred
AltCreds

We require iiC AltCreds⊆ for mi ≤≤0 .
The credentials in each disclosure are required to be unlocked by credentials from the other negotiation

participant in the previous disclosure, which means that the first disclosure consists entirely of credentials
that are unprotected. That is, we have unlocked(C0, ∅) and unlocked(Ci+1, Ci) for all .0 mi <≤ Any
disclosure can be empty, provided the subsequent disclosure consists of unprotected credentials.

6

Both client and server may set trust requirements that a trust negotiation may or may not succeed in
establishing. Trust requirements are represented by credential expressions. The trust requirement of
primary concern in this article is the server’s policy governing access to a service: the SGP. However, a
client might also set a trust requirement that it enforces before doing business with a server. In
negotiation strategies where trust requirements provide a goal that focuses the credential exchange, we
call the trust requirements trust targets.

A trust negotiation satisfies a server-set trust requirement, ,ψ if some client disclosure satisfies ,ψ
i.e., if),(ψjCsat for some even j∈[0, m]. A trust negotiation satisfies a client-set trust requirement, ,ψ
if some server disclosure satisfies ,ψ i.e., if),(ψjCsat for some odd j∈[0, m]. In either case, we say
that],0[}{ miiC ∈ satisfies .ψ

In one of the trust negotiation strategies introduced in Section 0, disclosures are guided by credential
requests that are also exchanged by the negotiation participants. Credential requests are formalized by a
sequence of credential expressions that accompanies the trust negotiation and that has the same length as
the sequence of disclosures. For a given trust negotiation, ,}{],0[miiC ∈ an accompanying sequence of
credential requests has the form .}{],0[mii ∈ψ

3.3. Negotiation Strategy

In our trust negotiation architecture, the negotiation strategy determines the search for a successful
negotiation. The strategy determines which credentials are disclosed, when they are disclosed, and which
credentials are requested from the other subject to unlock local credentials. Successful trust negotiation is
not always possible. One subject or the other may not possess needed credentials, or subjects may govern
their credentials by policies that, together, impose cyclic dependencies. The strategy determines when the
negotiation instigator—the client in our architecture—gives up on a negotiation.

Some desirable properties of negotiation strategies are as follows. A strategy should lead to a
successful negotiation whenever one exists; that is, it should be complete. It should terminate with failure
when success is impossible. Ideally, it should enforce a need-to-know policy, avoiding disclosure of
credentials that are not needed for the negotiation to succeed and disclosing no credentials when the
negotiation fails. Finally, a strategy should be efficient, giving a reasonable bound on the number of
messages that must flow during the negotiation. We analyze the extent to which these properties are
satisfied by using the abstract model defined in Section 3.2.

Within the context of the abstract model, we identify each negotiation strategy with a set of trust
negotiations. This high level of abstraction focuses our attention on the essential relationships between
CAPs and the disclosures and requests that flow between client and server SAs in each strategy. We
defined and analyzed three negotiation strategies, discussed briefly below. A complete discussion of
these strategies is not included in this report but can be found in [18] and [23].

An Eager Strategy
In the eager strategy, two security agents take turns sending every credential they have that is currently

unlocked. As credentials are exchanged, more credentials become unlocked. The client terminates a
negotiation when it receives a set of credentials from the server that it has already received (no new
credentials) or the set it receives unlocks no new client credentials. This strategy, as formalized here,
does not focus on a particular trust target, but simply expedites a maximal credential exchange.

Definition (Eager Negotiation): A trust negotiation, {Ci}i∈[0,m], is an eager negotiation if,
1. C0 is the maximal set such that unlocked(C0, ∅) and, for all i∈[1, m], Ci is the maximal set such that

unlocked(Ci, Ci−1), and,
2. for all i∈[1, m−3], Ci γ Ci+2, and,
3. if m is even, Cm−2 γ Cm.

7

Since it is the client that detects termination, the last disclosure from the server may repeat the server’s
prior disclosure. In the following discussion, ClientCreds, ServerCreds, govclient, and govserver are fixed but
arbitrary.

In [18] three theorems related to Eager strategy properties are presented and analyzed. Here we omit
the proofs.

• Theorem 1 (Efficiency of eager negotiation): The length, m+1, of any eager negotiation,
{Ci}i∈[0,m], is at most 2×min(|ClientCreds|+1, |ServerCreds|+1).

• Theorem 2 (Uniqueness of eager negotiation): There is a unique maximal length eager
negotiation.

• Theorem 3 (Completeness of eager negotiation): For any credential expression if there exists any
trust negotiation satisfying the expression, then the maximal length eager negotiation satisfies the
expression.

• Corollory 4 (Minimality of length of eager negotiation): For any credential expression, ψ, if there
exists any trust negotiation satisfying ψ, then there exists an eager negotiation of equal or lessor
length satisfying ψ.

The strengths of the eager strategy are its simplicity and the fact that no information about credentials

possessed is disclosed unless the CAP of the credential in question is satisfied. Its weakness is that it
discloses credentials without regard to their relevance to the present negotiation: there is no provision for
disclosing on a need-to-know basis.

A Parsimonious Strategy
Eager negotiations begin exchanging credentials essentially immediately. They make little or no use of

credential requests; although one of the variants presented above does call for the SGP to flow as a
credential request, even there, until the SGP can be satisfied by unlocked client credentials, all unlocked
credentials are exchanged without regard for any credential request. The parsimonious strategy differs
from the eager strategy in these respects. An intuitive explanation is presented here. The formal
definition can be found in [18].

1. Requests are exchanged to guide the negotiation toward satisfying a particular trust target. In

general, this trust target could be a SGP or a trust requirement set by the client. To simplify
the presentation, we assume the trust target is a SGP. Under this assumption, the first
credential request from the server is the trust target (i.e., the SGP).

2. When and if a request is sent that can be satisfied by unprotected (and therefore unlocked)

credentials, the negotiation reaches the point of confidence. Corollary 7 and Theorem 8 below
together show that when this occurs, the negotiation is bound to succeed.

3. Initial credential disclosures are empty in each stage up to and including the point of

confidence. If the point of confidence is never reached, the negotiation terminates without
disclosing any credentials.

4. Prior to the point of confidence, each successive credential request is derived from its

predecessor in a manner that makes satisfying that request a necessary and sufficient condition
for a disclosure to unlock credentials that satisfy the predecessor.

8

5. After the point of confidence is reached, the client resends its prior requests, going through
them backwards, at the same time disclosing appropriate credentials to unlock solutions to
those requests.

6. As mentioned above in point 2, when and if a request is sent that can be satisfied by a set of

unprotected credentials, a minimal such set is disclosed in the next stage. Each successive
step also discloses a minimal credential set that satisfies a credential request, working
backwards through the requests that were issued prior to reaching the point of confidence. The
client, which drives the negotiation, will have recorded each of the requests that has flowed. It
refers to requests it received from the server when selecting its own credential disclosures; it
resends the requests it sent to the server, as outlined in point 5 above. Each disclosure unlocks
the next, until a disclosure satisfying the original trust target is unlocked.

Definition (Parsimonious Negotiation): Let ψ be a credential expression and],0[}{ miiC ∈ be a trust
negotiation.],0[}{ miiC ∈ is a parsimonious negotiation with respect to the trust target, ,ψ if it is
accompanied by a sequence of credential requests, ,}{],0[mii ∈ψ and the following six requirements are
satisfied:

1. .1ψψ =

2. If there exists a j∈[1, m] and a C ⊆ AltCredsj+1 such that),(jC ψsat and unlocked(C, ∅), then,
letting k be the least such j, we say that the negotiation reaches the point of confidence at stage
k. Otherwise, we let k = m.

3. For all i, 1 ≤ i ≤ k, Ci = ∅.

4. For all i, 1 ≤ i < k, iψ and 1+iψ have the following relationship:

5. For all C ⊆ AltCredsi+2, we have),(1+iC ψsat iff there exists a C′ ⊆ AltCredsi+1, such that
),(iC ψ′sat and unlocked(C′, C).

6. After reaching the point of confidence, prior client requests (which have even indices) are
replayed. If k is even, we require jkjk −+ =ψψ for even j, 2 ≤ j < m−k (if any). If k is odd, we
require jkjk −+ =ψψ for odd j, 1 ≤ j < m−k (if any).

7. If the negotiation reaches the point of confidence at stage k, we require that for all j, 0 ≤ j <
m−k, (if any) Ck+j+1 is a minimal (under ⊆) subset of AltCredsk+j+1 satisfying),(1 jkjkC −++ ψsat
(and, as for any trust negotiation, unlocked(Ck+j+1, Ck+j) (recall that Ck= ∅)).

In [18] five theorems with associated corollaries and definitions related to parsimonious strategy

properties are presented and analyzed. Here we omit the proofs.
In Requirement 4, for any ,iψ we know that 1+iψ exists by the expressivity requirement on credential

expression languages (see Section 0). Since each parsimonious negotiation, {Ci}i∈[0,m], has an associated
sequence of credential requests, ,}{],0[mii ∈ψ we often refer to the parsimonious negotiation as the pair
〈{Ci}i∈[0,m],],0[}{ mii ∈ψ 〉. In the following discussion, ClientCreds, ServerCreds, govclient, and govserver are fixed
but arbitrary.

• Theorem 5 (Determinacy of Requests in Parsimonious Negotiation): Given two
parsimonious negotiations, 〈{Ci}i∈[0,m],],0[}{ mii ∈ψ 〉 and 〈{C′i}i∈[0,n],],0[}{ nii ∈′ψ 〉, with

9

equivalent trust targets, ,11 ψψ ′≡ we have ii ψψ ′≡ for all i, 1 ≤ i ≤ k, where k is either the
stage where one of the negotiations reaches the point of confidence, or m, or n, whichever is
least.

• Theorem 6 (When success is possible, parsimonious negotiations efficiently reach the point
of confidence): Given any credential expression ,ψ if there exists a trust negotiation that
satisfies ,ψ then we have the following:

o There exists a natural number k ≤ 2×min(|ClientCreds|+1, |ServerCreds|+1) such that
every parsimonious negotiation 〈{Ci}i∈[0,m],],0[}{ mii ∈ψ 〉, with k ≤ m and trust target ,ψ
reaches the point of confidence at stage k; and

o Every parsimonious negotiation 〈{Ci}i∈[0,m],],0[}{ mii ∈ψ 〉 with trust target ψ that has
not reached the point of confidence (i.e., m < k) can be extended to a parsimonious
negotiation that reaches the point of confidence at stage k.

• Definition (Stuck Parsimonious Negotiation): Let 〈{Ci}i∈[0,m],],0[}{ mii ∈ψ 〉 be a parsimonious
negotiation with respect to some trust target .ψ 〈{Ci}i∈[0,m],],0[}{ mii ∈ψ 〉 is stuck if it reaches
the point of confidence at some stage k, m < 2k, and there is no C′ ⊆ AltCredsm+1 with

),(2 mkC −′ ψsat and unlocked(C′, Cm).

• Theorem 7 (Parsimonious negotiations are not stuck): No parsimonious negotiation is
stuck.

• Corollary 8 (Parsimonious negotiations that reach the point of confidence can be
extended): Every parsimonious negotiation that reaches the point of confidence at some stage
k can be extended to form a parsimonious negotiation of length 2k+1.

• Theorem 9 (Parsimonious negotiations that reach the point of confidence and are
sufficiently long satisfy their trust targets): Every parsimonious negotiation 〈{Ci}i∈[0,m],

],0[}{ mii ∈ψ 〉 that reaches the point of confidence at some stage k and has m = 2k satisfies its
trust target.

• Corollary 10 (Completeness and efficiency of parsimonious negotiation): Given any
credential expression ,ψ if there exists a trust negotiation that satisfies ,ψ then there exists a
natural number k ≤ 2×min(|ClientCreds|+1, |ServerCreds|+1) such that every parsimonious
negotiation with trust target ψ and length 2k+1 satisfies .ψ Moreover, every parsimonious
negotiation with trust target ψ and length less than 2k+1 can be extended to one with length
2k+1.

• Theorem 11 (Local minimality of disclosures in parsimonious negotiation): In a
parsimonious negotiation, no credential is disclosed unless and until the point of confidence is
reached, at which time successful negotiation is guaranteed. Then, each disclosure consists of
a minimal (under ⊆) set of credentials sufficient to unlock either the next credential disclosure
or the desired service.

Any deployment of the parsimonious strategy should take advantage of the fact that, if a successful

negotiation exists, the initial exchange of credential requests will encounter a request that can be satisfied
by unprotected credentials within the first 2×(|ClientCreds|+1) requests. If such a request has not occurred,
the negotiation should be terminated.

10

A Prudent Strategy
Eager and parsimonious negotiations may either fail when in fact success is possible, disclose

irrelevant credentials, or have a high communication complexity. The prudent negotiation strategy
(PRUNES) guarantees that trust is established, if allowed by the credential disclosure policies. PRUNES
makes sure that no irrelevant credentials are disclosed during trust negotiations and is efficient: in the
worst case, the communication complexity is O(n2) and the computational complexity is O(nm), where n
is the number of credentials and m is the size of the credential disclosure policies in disjunctive normal
form.

Two theorems regarding PRUNES are defined below. A thorough discussion of the strategy and
proofs of these theorems are available in [23].

• Theorem 12: The worst case communication complexity (total number of messages, total size
of messages, and number of rounds) of PRUNES is O(n2), where n is the total number of
credentials requested during the negotiation.

• Theorem 13: The computational complexity of PRUNES is O(nm), where n is the total
number of credentials and m is the total size of the policies of both parties.

Hybrid Strategies
Eager and parsimonious strategies can be combined in an effort to use each with the credentials for

which it is better suited. CAPs can be made two-part, comprising not only a credential expression, but
also a flag to select between parsimonious and eager disclosure. A credential flagged for eager disclosure
would be disclosed freely to all sites that present credentials that satisfy the credential-expression
component of its CAP. One flagged “parsimonious” would be disclosed only as part of a locally minimal
exchange and successful negotiation. A hybrid strategy begins with a phase that uses an eager strategy to
attempt to negotiate using only credentials flagged for eager disclosure. If success is possible using just
those credentials, the negotiation succeeds during the eager phase. If not, phase two uses a parsimonious
strategy to attempt to establish trust by using all credentials. Phase two takes advantage of credentials
exchanged during phase one. In a hybrid negotiation, the client determines when phase one has
completed unsuccessfully and phase two begins. The client indicates in each request to the server which
strategy it is currently employing.

3.4. Credential Expression Languages

Our focus during the TMOS project was not on credential expression languages. The extensions we
made to existing approaches [17] are presented in [18]. However, two language features, introduced and
discussed in [18], reflect important issues that should guide further work in policy languages for trust
negotiation. First, role attributes enhance expressiveness. Second, the monotonic relationship between
credentials and access is essential in any context where a subject can withhold disclosure of its own
credentials.

An authorization policy defined in our Role-based Authorization Language (RAL) consists of a role-
constraint expression, which expresses requirements for access to the service or credential that it governs.
These requirements are expressed in terms of roles of the subject seeking access. These roles are defined
by an authentication policy written in our Attribute-based Authentication Language (AAL). An AAL
authentication policy assigns a subject to roles based on subject properties derived from credentials
owned by the subject and from the roles of the issuers of those credentials. This assignment is
independent of the question of the subject’s access to the service. Thus, an AAL role is not a capability,
but represents a derived attribute of the subject.

3.5. Demonstration Prototypes

We constructed two prototype systems that demonstrate trust negotiation and implement the eager
negotiation strategy. The first system uses the trust policy language, developed at IBM Haifa Research

11

Lab, to specify mappings from credentials to roles, and the trust establishment system, also from Haifa, to
evaluate role membership questions. We have deployed the IBM system in a scenario that illustrates a
potential application of trust negotiation in a real-world situation. The IBM system is described at a high
level in [18]. The second system, developed at North Carolina State University (NCSU), also implements
the eager negotiation strategy but uses freely available components. The NCSU system using, an Apache
web server and Java application programs, is described in [12].

4. Public Key Management
The negotiation strategies described above depend on cryptographically secure public key services.

Thus, limited TMOS resources were applied to the problem of public key management services. While
the mechanics of certifying and revoking public keys, and escrowing and recovering private keys have
been widely explored, less attention has been paid to access control frameworks for regulating access to
stored keys by different parties. In [15] we proposed such a framework for a key management service
supporting public key registration, lookup, and revocation, and private key escrow, protected use (e.g., to
decrypt selected messages), and recovery. The access control model proposed uses policies based on
principal, ownership, and authority relationships on keys. The model allows owners to grant to others
(and revoke) privileges to execute different actions on their keys. The simple authorization language is
very expressive, enabling the specification of authorizations for composite subjects that can be fully
specified (ground) or partially specified, thus making the authorizations applicable to all subjects
satisfying some conditions.

5. Conclusions
We developed a model and architecture for negotiating mutual trust between clients and servers

through an incremental exchange of potentially sensitive credentials. We specified and analyzed three
negotiation strategies, one eager and one parsimonious (i.e., stingy) with credential disclosures and one
efficient and complete. The eager strategy negotiates efficiently, succeeding whenever possible. Its
participants exchange no credential requests, nor otherwise attempt to minimize credential disclosures.
The drawback is that many credentials are disclosed unnecessarily. However, the strategy reveals no
information about any credential that a subject possesses until the credential’s CAP is satisfied. There is
an advantage in this: credential requests exchanged in the parsimonious strategy could in principle reveal
a great deal about which credentials a subject has.

The parsimonious strategy conducts a minimal-length exchange in which each disclosure is a locally
minimal set. It does this by conducting an exchange of credential requests that in effect considers every
possible successful exchange. It remains open how to ensure that the union of each participant’s
disclosures is minimal—or whether this is even possible. Because agents using the parsimonious strategy
exchange credential requests, even when negotiation fails, they provide one another with information as
to the credentials that, if obtained, might enable successful negotiation in the future. The credentials that
would enable future success could be new credentials issued to one of the agents, or they could be
supporting credentials that document the properties of credential issuers.

The prudent strategy is complete in that trust is established if allowed by the credential disclosure
policies. It also makes sure that no irrelevant credentials are disclosed during trust negotiations. Is
efficient: in the worst case, the communication complexity is O(n2) and the computational complexity is
O(nm), where n is the number of credentials and m is the size of the credential disclosure policies in
disjunctive normal form.

The strategies presented here assume that both participants cooperate in using the same strategy.
Further research is required to determine whether and how that assumption can be relaxed or well
justified. A parsimonious negotiation guarantees locally minimal credential disclosure only when both
parties “bargain in good faith.” This means that each SA assumes the following about the other SA.
When the other SA responds to an incoming request by issuing a counter request, if that SA subsequently
receives credentials that satisfy the counter request, together with a repetition of the original request, it
will return credentials that satisfy that original request. One advantage of a hybrid negotiation strategy is

12

that the eager phase could be used to establish trust that the other negotiation partner will bargain in good
faith before entering a parsimonious negotiation.

This research focused on managing sensitive credentials. Further work is needed in the management of
policy information. Negotiation strategies that exchange policy content introduce trust issues that have
not yet been addressed. Policy owners may need to protect sensitive policy content. Security agents
receiving mobile policy content may need to verify its authenticity and integrity.

6. References
[1] E. Bina, V. Jones, R. McCool, and M. Winslett, “Secure Access to Data Over the Internet,”

Proceedings of the Third ACM/IEEE International Conference on Parallel and Distributed
Information Systems, Austin, Texas, Sept., 1994.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis, “The KeyNote Trust Management
System,” work in progress, Internet Draft, March 1999.

[3] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “KeyNote: Trust Management for Public-Key
Infrastructures,” Cambridge 1998 Security Protocols International Workshop, England, 1998.

[4] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust Management,” 1996 IEEE Conference
on Privacy and Security, Oakland, 1996.

[5] N. Ching, V. Jones, and M. Winslett, “Authorization in the Digital Library: Secure Access to
Services across Enterprise Boundaries,” Proceedings of ADL '96 --- Forum on Research and
Technology Advances in Digital Libraries, Washington, DC, May 1996. Available at
http://drl.cs.uiuc.edu/security/pubs.html.

[6] T. Dierks, C. Allen, “The TLS Protocol Version 1.0,” draft-ietf-tls-protocol-06.txt, Nov. 12, 1998.
[7] S. Farrell, “TLS Extensions for Attribute Certificate Based Authorization,” draft-ietf-tls-attr-cert-

01.txt, August 20, 1998.
[8] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 Protocol,” Netscape Communications Corp.,

Nov., 1996.
[9] W. Johnston, S. Mudumbai, and M. Thompson, “Authorization and Attribute Certificates for

Widely Distributed Access Control,” Proceedings of the IEEE 7th International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises—WETICE '98.

[10] N. Li, J. Feigenbaum, and B. Grosof, “A Logic-based Knowledge Representation for Authorization
with Delegation” (Extended Abstract), Proceedings of the 12th Computer Security Foundations
Workshop, IEEE Computer Society Press, Los Alamitos, 1999, pp. 162-174. Full paper available as
IBM Research Report RC21492(96966).

[11] N. Li, B. Grosof, and J. Feigenbaum, “A Practically Implementable and Tractable Delegation
Logic,” to appear in Proceedings of the 2000 IEEE Symposium on Security and Privacy.

[12] F. Lin, “Establishing Trust: Negotiating Disclosure of Sensitive Information,” Master’s Thesis,
Department of Computer Science, North Carolina State University, May 2000.

[13] A. Herzberg, J. Mihaeli, Y. Mass, D. Naor, and Y. Ravid, “Access Control Meets Public Key
Infrastructure, Or: Assigning Roles to Strangers,” to appear in 2000 IEEE Symposium on Security
and Privacy, May 2000. Available at http://www.hrl.il.ibm.com/.

[14] “The Trust Policy Language,” IBM Haifa Research Laboratory (http://www.hrl.il.ibm.com/), email
contact: YOSIMASS@il.ibm.com.

[15] P. Samarati, M. Reiter, and S. Jajodia , “An Authorization Model for a Public Key Management
Service,” submitted to ACM Transactions on Information and System Security.

[16] B. Schneier, Applied Cryptography, John Wiley and Sons, Inc., second edition, 1996.
[17] K. Seamons, W. Winsborough, and M. Winslett, “Internet Credential Acceptance Policies,”

Proceedings of the 2nd International Workshop on Logic Programming Tools for Internet
Applications, July, 1997. Available at http://clement.info.umoncton.ca/~lpnet/proceedings97/.

[18] W. Winsborough, K. Seamons, V. Jones, “Automated Trust Negotiation,” ACM Transactions on
Information and System Security, submitted April 2000.

13

[19] W. Winsborough, K. Seamons, and V. Jones, “Automated Trust Negotiation: Managing Disclosure
of Sensitive Credentials,” Transarc Research White Paper, May 1999.

[20] W. Winsborough, K. Seamons, and V. Jones, “Negotiating Disclosure of Sensitive Credentials,”
Second Conference on Security in Communication Networks (SCN ’99), September, 1999.

[21] W. Winsborough, K. Seamons, and V. Jones, “Automated Trust Negotiation,” DARPA Information
Survivability Conference and Exposition (DISCEX ’2000), January, 2000.

[22] M. Winslett, N. Ching, V. Jones, and I. Slepchin, “Using Digital Credentials on the World-Wide
Web,” Journal of Computer Security, 5, 1997, 255-267.

[23] T. Yu, X. Ma, and M. Winslett, “PRUNES: An Efficient and Complete Strategy for Automated
Trust Negotiation over the Internet,” Proceedings of the 2000 Computer and Communications
Security Conference, 2000.

[24] P. Zimmerman, PGP User's Guide, MIT Press, Cambridge, 1994.
[25] Simple Public Key Infrastructure (SPKI), http://www.ietf.org/html.charters/spki-charter.html.
[26] International Telecommunication Union, Recommendation X.509 - Information Technology - Open

Systems Interconnection - The Directory: Authentication Framework, August 1997.

14

List of Abbreviations

AAL attribute-based authentication language
CAP credential access policy
NCSU North Carolina State University
PRUNES prudent negotiation stragegy
RAL role-based authorization language
SA security agent
SGP service-governing policy
TMOS Trust Management in Open Systems

